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Table 1 Gas phase decay lengths for both bulk and wall
damping in a tube of 5-cm radius

P =11 atm P = 30.7 atm
f, cps Ly, cm Ly, cm Lp, cm Ly, cm
108 3.26 X 105 1.42 X 103 9.09 X 107 7.50 X 103
5% 103 1.30 X 105 6.33 X 102 3.64 X 10¢ 3.35 X 103
104 3.26 X 10 4.47 X 102 9.09 X 108 2.36 X 10%
2 X 104 8.12 X 103 3.17 X 102 2.26 X 105 1.68 X 103

energy through viscous interaction with the particles is given
by

dE/E = —3kVH"dx = —4kaNH"ra*dz ¢))
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with greater than the optimum particle size. Thus, the
analysis indicates the desirability of adding the powders in
the condition of the finest granulation that is obtainable.
As would be expected, the damping increases as the quan-
tity of additive increases [Eq. (3)].

The analysis takes no account of the chemical reactivity of
the additives. This might profoundly alter their damping
characteristics. The particle size of the products might, for
example, be considerably different from that of the additive
itself. Also, the temperature nonequilibrium between the
particles and the gas and the jetting and spinning of the
burning particles will probably change their damping prop-
erties.

{12}{1 + Ba}{[Bal* + [6/(1 — §)]1[(Bn)* + § Bal}

/A
H_16

Equation (2), which is obtained from the results of Refs.
2-4, holds for fa < 1. When 6 < Ba and higher-order terms
are dropped, Eq. (2) agrees with the result of Ref. 8. In the
foregoing equations, k = w/¢, 8 = (w/2v)Y% 6 = py/p1, and
V is the volume of solid particles per unit volume of total
mixture, medium, and solid particles.

The decay length L, over which the acoustic energy flux
is reduced to 1/¢ of its original value is given by

L, = 1/3kVH" 3

The viscous and thermal damping by the pure gas phase,
without particles, consists of damping both in the bulk of
the gas and at the walls of the tube. For the case of a plane
wave traveling axially along a tube of radius B, the two
damping constants are given by Refs. 5-7:
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and the decay length is given by
Ly = 1/20, L, = 1/20, (6)

In the case where all three types of damping are present and
acting independently, the combined damping constant is
given by

1 1 1 1

L_LP+L1,+L,, ™
Equations (2-5) were used to calculate the decay lengths
L,, Ly, L, for a hypothetical propellant that contained 109,
Al by weight. It was assumed that all of the aluminium was
converted to liquid AlyOs.

The combustion gases were assumed to have the proper-
ties of CO at 3000°K. Thus, the physical constants had the
following values: ¢, = 0.227 cal/g-°K, ¢ = 1.12 X 10% cm/
sec, A = 2.6 X 1074 cal/sec-em-°K, v = 14, p = 7.75 X
10~ poise, p1 = 3.5 g/em3, po = 1.14 X 10~ g/em? per at-
mosphere pressure, V = 0.233 (po/p1) = 0.0665 po.

The calculation was made for pressures of 1.1 and 30.7 atm.
The results for L, are shown in Fig. 1, whereas those for L.,
and L, (for B = 5 cm), are shown in Table 1.

It is noteworthy that the particle damping is relatively
insensitive to chamber pressure, whereas the wall damping
is inversely proportional to the square root of the chamber
pressure. Thus, over the range of critical particle sizes
where particle damping far exceeds wall damping, L will be
insensitive to pressure level.

The maximum particle damping occurs in the size range
1 to 10 g, which is a range that is available in commercial
metal powders. Powders of smaller particle size are diffi-
cult to obtain, and most propellant systems probably operate

(Balf T 485/(1 — H]1(Ba)* + §(Ba)’] + S1B/(L — HPE(Ba)* + (8 + 2(Ba)* + 26w + 11 P

Conclusions

The combustion products from metal additives in solid
propellants can greatly increase the acoustic damping con-
stant of the combustion gases. The particle sizes for which
this effect is most pronounced are in the 1- to 10-u range,
which is about the minimum size range in which commercial
metal powders are available. When the damping is pre-
dominately caused by particles in the combustion gases, it
is insensitive to chamber pressure.

In Ref. 9, Horton and McGie have presented results of their
caleulations of the acoustic damping constant for propellent
gases that contain 29, of Al,O; particles. This analysis is
part of a larger analysis of their experimental results, and their
viewpoint is somewhat different than that taken in this note.
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Nomenclature
Elliptic elements

@ = semimajor axis
L = meanlongitude, measured from ¢ axis
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p = 7' component of & vector of length e, in the direction of where

the perifocus
g = £component of the same vector '= d/dv

W = sin® sing, the ¢ component of the unit vector in the direc-
tion of the angular momentum
Wy = —cosQsing, the n’ component of the same vector

Other symbols are defined in the text, as they are used.

Introduction

T is well known that the relative motion of a point with

respect to another point moving in a circular orbit in a
spherical gravitational field can be expressed in a simple
manner if the relative distance is small in relation to the
orbital radius. The point of reference may be called the
nominal point, moving in the nominal orbit.

In this note the problem of relative motion in close orbits
is generalized for the case in which the nominal orbit is an
ellipse. If nondimensional variables are introduced for the
relative distances and the true anomaly is used as the inde-
pendent variable (instead of the time), it is shown that the
solution may be developed in powers of the nominal orbit’s
eccentricity. In essence this solution has the same simple
form as that of the circular case.

In order to compare two perturbation solutions of a par-
ticular three-body problem, one in rectangular coordinates
and one in elliptic elements, the author recently required ex-
pressions for the changes in the elliptic elements in terms
of small changes in relative positions and velocities with re-
spect to a nominal orbit. The main purpose of this note is to
point out the interesting relationship between these changes
in elements and the integration constants of the equations of
relative motion.

Elliptic Elements in Terms of Relative
Position and Velocity

Let units be chosen so that for the nominal orbit, the semi-
major axis ¢ = 1; also, let the gravitational constant k2 = 1
The position of P is given by (£,1,{) in the relative coordinate
system attached to the nominal point P, with the £ axis in the
direction of the nominal radius, the 5 axis perpendicular to £
in the direction of orbital motion, and the { axis completing
a right-handed coordinate system. The relative coordinate
system moves with Py along the nominal orbit, at any instant
rotating with angular velocity o.

The elliptic elements of the orbit of P are to be expressed
in terms of the components of relative position and velocity.
The inertial position vector of P expressed in the rotating
£,7',¢ coordinate system (where the %’ axis is parallel to the
7 axis and goes through the center of attraction) is

e+ &
R=|9 1)
£

Similarly the velocity vector of P is
fo + £ — 10
7'_0150 + &+ 1 2)

fRHER
V=14 +]0 [x]|n =
e Yo §

£

Here and in what follows, the subscript 0 refers to the nominal
orbit.
If now nondimensional coordinates are introduced by

z = £/r y = 1/T 2= /1 (3)

and the true anomaly of P, on the reference orbit is used as
the independent variable instead of the time, one has

1+ 2 2 —y+ {1+ z)e
R=rly Ve=rg|l+az+y + e (4)

2+ ez

2

€ = 7'0,/7'0 = (607'0/]7402) sinvo

These expressions are now to be substituted in the rela-
tions between elements and coordinates, specialized for low-
eccentricity orbits (see, for instance, Ref. 1). For small
relative position and velocity vectors, the resulting formulas
may be developed in powers of the components (z,y,2,%,7,2).
In the following this development has been carried out to
include all the quadratic terms in z, . . . 2. The elliptic ele-
ments are chosen as indicated in the Nomenclature.

This choice of elements is in part motivated by the desire
to obtain expressions for orbits with small eccentricity and
small inclination. More importantly, the motivation is found
in the simple and elegant results that are obtained. These
results can be connected immediately with the expressions
for relative motion of two particles in close orbits. These
expressions are well known for the case in which the reference
point moves in a circular orbit and will -be derived here for
an elliptical reference orbit. o

If X,¥,7Z are the components of R and X,Y,Z are the com-
ponents of V, the components of the angular momentum
vector h are found to be

he = YZ — ZY = ho(—2 — 22 + y2' ~ 2y’)

hy = ZX — X7 = ho(—2' — yz + 22’ — x2")
he = XYV — YX=ho(1 + 22 + ¢ + 22 +

y* + ay — y2')
where hy = ro%y, the angular momentum of the nominal

orbit. The magnitude of the angular momentum is thus:

ho= (h?+ k2 + BV =
ho(l 4 2¢ + 9" + 22 + 4> + 322 + 322 + 2y’ — y2)

The radial velocity R is

B = lBR—lT = rohola’ + € + ex + yy' + 22')
so that

esinv = Rh = e sinyy +

(he*/re) (@’ + 222’ + 'y’ + yy’ + 22’ + 3ex + ') (5)
Also,

ecosy = (h/r) — 1 = e cosvy + (he?/70) (32 + 2y +
3z% 4+ Sy + 122 + 4oy’ + yt — 22’ + %) (6)

The eccentricity follows from (5) and (6):

e? = g2 -+ 2epx’ sinvy + 263z 4 2y') cosvy + ' +
‘ B3z + 2y")?

and, with this and the angular momentum, the semimajor
axis is

a=h¥/(1 —e?) =14 42+ 2y + 1522 + 2% +
22 4 Byt + 27 4+ 182y’ — 2y’ + 2" +
2e0z’ sinvy + 2e0(3x + 2y") cosvy  (7)

In the development of this expression and in all the following,
the nominal eccentricity e, has been treated as being of the
same order as the components of relative position and velocity.

Now the vector W is defined as the unit vector in the direc-
tion of h, the vector U as the unit vector in the direction of
R, and the vector Vby V=W X U.

The components of the vector a of magnitude ¢ and in the
direction of the perifocus follow from the vectors U and V in
combination with Egs. (5) and (6). The expression A%/ro
has been replaced by (1 4 e, cosvo), and po and ¢, are defined
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by po = —e sinyg and g = € cosye. The components of
a are thus

a; = Usecosv — Veesinw = qo 4+ 3z 4+ 2y +
day’ — o'y + 307 + §p* + 37+ " +
2"+ 3290 + 24’00 ~ ypo
ay, = Ugecosv — Voesine = py — 2" + 3ay +
yy' — 223’ — x'y’ — 22’ — 3ex —
e’ + yg — 2'q

F®

]

a, = Ugcosv — Vesinw = gz + 32z +

20’z + po2’ — 2’2’

The eccentric anomaly is best introduced in combination
with the true anomaly:

~ o (sin(e — E)\ _ .
(v — E) = tan™?! (c—os(v — E)) = tan (e siny) X
< 1+ ecosy 4 (1 — D12 )
14+ ecosv + (1 — )2 + ¢ cosv(l — )V — (e?sin%)

Since only second-order terms are required, this is reduced
quite easily to

(v — E) = esinv(l — Le cosw)
so that, with Eqs. (5) and (6) one has
(0 — E) = (vo— Eo) +a' + 322" +yy' +
22" 4+ 3ex + ey + Lqox’ + Zpexr + poy’ (9)
The term (e sink) in Kepler’s equation is
esinp(l — e2)V2

= e siny(l — e cosy
1 4 e cosv ( )

esink =

since no terms of higher than second order are required.
Thus, again with Egs. (5) and (6),
esinF = ¢ sinky + 2’ — zz’ — 2’y + yy' +

22’ 4 3ex + ey’ + 3piz + 2poy’  (10)

Equations (9) and (10) now may be used in Kepler’s
equation to give the equation of the center:

w—M)=(@w—E) +esinkE =
(vo — Mo) + 22" — $xz’ — 2y’ + 2yy’ + 222" +
6ex + 2ey’ + Fqoz’ + (9/2)pox + 3poy’  (11)

The true longitude I measured from the £ axisis
Uv,— V. y(1 — x) + %22
= B U it A T, (AL ZANL N hodi) T
I = tan (U, T V,,> tan (1 T I = 1o
y —zy + 322’ (12)
Finally, the mean longitude is found from Egs. (11) and
(12):
L=l~@w—-—M)=L+y—2" —ay+
Yax’ + 'y’ — 2yy’ — S22’ — Gexr — v
2¢y" — 307" — $pow — 3poy’  (13)
Expressions for all the elements have now been obtained.

Using only the first-order results, for the sake of simplicity,
they are as follows:

From Eq. (7)

a =14 202z 4 y")
From Eq. (13)

L =1Ip+ (y — 22"

+ (14
From Eg. (8) (14
p=ay =p — =a =¢ + Bz + 2"
From the definition of W
W, = —z W, = —z2
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Besides the components of relative position and velocity,
these expressions contain three elements of the nominal orbit
which are connected with the position of P, on this orbit.
They can be computed from the true anomaly and the eccen-
tricity as follows:

Ly =M —v = —2esinv + Le? sin2v (15)
to the second order, and

Do = —e siny Qo = € COSlg (16)

The quantities z,y,2,2",y’,2' follow from the actual com-
ponents of relative position and velocity by the definition,
Egs. (3). In particular, one has for z’

r rof — &
(1 — g2

(17)

and similarly for y” and z’.

Relative Motion of Two Points in Close Elliptic Orbits

Using the components of velocity in Eq. (2), the La-
grangian is

L= Y[(h+ & — ni0)? + (reto + o+ )2+ ] — U
where
U= —{(ro+ 02+ 9?42} 12

Since the motion in the nominal orbit is assumed known,
use may be made of the equations of motion to express cer-
tain relations between 7, and dp: % — rote? = —(1/7%) and
2”"01}0 + 7‘050 = 0.

The equations of relative motion are thus

£ — 200 — & — iy = 2E/re
9 4 25.750 — ne? + & = — ’i7/7”03
f’= —i/rd

where only those parts of du/0%, du/dy, and du/df are used
which are linear in the variables. This limits the validity of
this analysis to the case in which the relative distance is
“small” compared to the orbital radius.

Introducing again the nondimensional variables z,y, and
z [Eq. (3)] and the true anomaly of the reference point asg
independent variable, the equations of motion are

x” — 2y’ = 8x/ry%?

y" 4+ 22" =0
2" = —2/ry%?

The second of these may be integrated immediately and
the result of this may be substituted in the first equation.
Thus, one has two independent second-order equations. If,
finally, use is made of the known elliptic motion of the refer-
ence point to rewrite the right-hand side

1/re%52 = (1 + € cosvy) L =

1 — ey costy + 2e2(1 + cos2v) + ... (18)

the equations become h
2" + z = 20 — 3ze, cosvg (19)
2" + 2 = ez cosvy (20)

For the present purpose it is sufficient to include only the
first power of the nominal eccentricity in Eq. (18) and to
further specialize the problem to the case in which #(t = 0) =
0. After a solution for z is obtained, y follows from

y=cvo+D—2j;”“xdv 21)

Equations (19) and (20) may be solved by a simple per-
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turbation technique, based on assuming a solution in the form

@
= Z euiZ,'
i=1

To the first order in ey, the result is

«©
xr = Z eofx,-
i=1

xz = 2C + A cosyy + B siny, +
es(—3A4 + A cosvy — B sinvy + 4 cos2v 4
%B Sil'l21)q - 301)0 sinvo)
y = D — 3Cv — 24 sinvg + 2B cosvy +

(349, — 24 sinvy + 2B cosvy —% A sin2u +
1B cos2vy + 6C sinyg — 6w, sinvy)

z = I cosw + F sinvy + e[32E — £E cosvp — :
3E cos2vy + 3F sinvg — LF sin2u]

Note the appearance of ‘“‘secular” terms with vy, v cosvy, and
vy sinyy and the appearance of higher harmonics in the terms
that have ¢ as factor. The secular terms are of course un-
avoidable since they indicate the continuously growing rela-
tive distance between two points in close orbits of slightly
different period. It is interesting to note that no terms with
v appear, even if the solution is carried out to include eg?.
It is not surprising that the integration constant C' is closely
connected with the semimajor axis; it is, on the other hand,
somewhat surprising that very simple relations exist between
the other integration constants and elliptic parameters.
In terms of the initial condition of relative position and ve-
locity, the integration constants are

A = —(3z(0) 4 2y'(0))
B = a'(0) B=20 -
C = 22(0) + y'(0) F =20

A comparison with Eqs. (14) shows that the integration con-
stants are precisely the changes in the orbital elements at
least as far as first-order terms in the relative positions and
velocities are concerned.

D = y(0) — 2z'(0)
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A Note on Lunar Librations

IrviNG MIicHELSON*
Illinois Institute of Technology, Chicago, I1I.

LTHOUGH itis considered that gravity-gradient torque is
insufficient by itself for attitude control of artificial
satellites, the mechanically equivalent phenomenon of lunar
librations is nevertheless of great technical interest. Recent
studies of the satellite problem disclose basic features of the
motion, equally valid for the moon, but not elucidated in the
specialized literature on that subject. Aside from the funda-
mental interest in a classic problem and possible new basis for
interpretation of amassed observational data, the results are
important for the newer stability analysis.

The fact that the moon persistently presents the same face
toward earth, enunciated more than two centuries ago as
Cassini’s first law, stimulated researches by Lagrange,
Laplace, and many others. Departures from this idealized
motion, termed physical librations, are of such small ampli-
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tude as to have thwarted all attempts to measure them as-
tronomically, a fact the more remarkable in view of the nearly
perfect symmetry of lunar mass distribution. From the
purely physical viewpoint, nothing less than mathematical
proof is needed to lend plausibility to an obvious fact so much
at variance with intuition.

Librational motion about a mass center itself in nonuniform
motion is described by Euler’s equations of rigid-body motion,
extended to include effects of relative motion. This system of
three coupled partial differential equations for the lunar
motion, strictly nonlinear, has classically been treated by
studying motion slightly perturbed from equilibrium and by
further limiting the analysis to the longitudinal motion that is
then uncoupled.® The remaining two modes, termed physical
libration in inclination and physical libration in node, have
meanwhile been essentially neglected. Although these two
strongly coupled modes appear at first sight to be the most
formidable ones from the mathematical standpoint, it will

- now be shown that important properties of these modes are

revealed by applying directly the more detailed treatments
given in satellite studies. In addition, these characteristics
strongly suggest that the traditional preference for isolating
longitudinal motion was an unfortunate choice made long ago
and not corrected by later workers.

Free lunar librations for idealized Keplerian motion in a
cireular orbit are governed by equations given in Ref. 1; with
unimportant changes of notation to conform with standard
usage in the literature on that subject, these are

a+m(C;B>a—9(1—CzB>5=o )
oL o (C— 4 c—4\, _
ﬁ+4&2< = )[S’-i—ﬂ(l— : >a_o @

v+ 0 (B2 4) v =0 @

Here A,B,C and «,8,7v denote, respectively, principal inertia
moments and small angular displacements from equilibrium
for nodal (i.e., earth-pointing), inclination (i.e., moon lati-
tude), and longitudinal components of the physical libration,
and Qis lunar orbital angular speed. The nearly symmetrical
mass distribution is shown by the smallness of the dimension-
less inertia differences, which have numerical values given by
(see, e.g., Ref. 2)

(C — 4)/C = 0.000627 (B—4)/C =0.000118 (4)

Denoting these for convenience by e; and e, respectively, the
third one of the differences that appear in the system of equa-
tions, denoted by e, is closely obtained as the difference
& — &; these three quantities then satisfy the important
inequalities

0<a< < e (5)

Equation (3) shows that longitudinal libration is uncoupled
from the other modes, with period of free oscillation inversely
proportional to the square root of €; its numerical value is
about 53 months. This is the part of the motion examined
theoretically and sought unsuccessfully through observations
started by Bessel more than 100 years ago. Principal atten-
tion in modern times has centered around the forced motion
resulting from solar attraction and orbital ellipticity.

Physical librations in node and inclination, described by
Eqgs. (1) and (2), are obviously strongly coupled by the first
derivative terms of order unity. Each equation admits
harmonic solutions, and it is found that physical libration in
inclination “leads” the nodal motion with a phase angle nearly
equal to 90°. Of perhaps even greater importance from
standpoint of observation is the fact that one of the two
periods of free motion is very much smaller than the other,
small even when compared with the period of free longitudinal



